A review: Deep learning for medical image segmentation using multi-modality fusion
نویسندگان
چکیده
منابع مشابه
Deep Learning for Medical Image Segmentation
This report provides an overview of the current state of the art deep learning architectures and optimisation techniques, and uses the ADNI hippocampus MRI dataset as an example to compare the effectiveness and efficiency of different convolutional architectures on the task of patch-based 3dimensional hippocampal segmentation, which is important in the diagnosis of Alzheimer’s Disease. We found...
متن کاملDeep Learning for Multi-task Medical Image Segmentation in Multiple Modalities
Automatic segmentation of medical images is an important task for many clinical applications. In practice, a wide range of anatomical structures are visualised using different imaging modalities. In this paper, we investigate whether a single convolutional neural network (CNN) can be trained to perform different segmentation tasks. A single CNN is trained to segment six tissues in MR brain imag...
متن کاملFusion of Multi-Modality Volumetric Medical Imagery
Ongoing efforts at our laboratory have targeted the development of techniques for fusing medical imagery of various modalities (i.e. MRI, CT, PET, SPECT, etc.) into single image products. Past results have demonstrated the potential for user performance improvements and workload reduction. While these are positive results, a need exists to address the threedimensional nature of most medical ima...
متن کاملDeep learning and its application to medical image segmentation
One of the most common tasks in medical imaging is semantic segmentation. Achieving this segmentation automatically has been an active area of research, but the task has been proven very challenging due to the large variation of anatomy across different patients. However, recent advances in deep learning have made it possible to significantly improve the performance of image recognition and sem...
متن کاملInteractive Medical Image Segmentation using Deep Learning with Image-specific Fine-tuning
Convolutional neural networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they have not demonstrated sufficiently accurate and robust results for clinical use. In addition, they are limited by the lack of image-specific adaptation and the lack of generalizability to previously unseen object classes. To address these problems, we propose a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Array
سال: 2019
ISSN: 2590-0056
DOI: 10.1016/j.array.2019.100004